

Crystal

Bruce A. Tate

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: pending
Encoded using the finest acid-free high-entropy binary digits.
Book version: B1.0—Monthname, yyyy

Contents

Change History v

Preface vii
1. Crystal Clear Philosophy 1

Meet Crystal 2
Rapid Adoption and Infrastructure 5
Installation 7
The Playground for Exploration 12
Classes, Cases and Ifs 19
Try It Yourself 20

Change History
The book you’re reading is in beta. This means that we update it frequently.
Here is the list of the major changes that have been made at each beta release
of the book, with the most recent change first.

B1.0: Sept 16, 2019
• Initial beta release. Welcome to the Programmer Passport! We’ll continue

to add on chapters on a regular schedule. We’d love to hear what you
have to say.

report erratum • discuss

Preface
I opened up my passport yesterday and looked at all of the stamps sprinkled
throughout, triggering fond memories of the places and people I’ve encountered
in my travels. Learning new languages is very much that way for me. Welcome
to Programmer Passport.

We’re glad you’re here. Twenty years ago in The Pragmatic Programmer, my
friend and business partner Andy Hunt and my longtime mentor Dave Thomas
charged us with learning a new language every year. I took that advice and
never gave up the habit. In this series we’ll learn languages together because
doing so will make us better programmers. I strongly believe learning even
obscure languages teaches common patterns that can be applied in your day
to day job.

Ten years later, I wrote a book called Seven Languages in Seven Weeks, and
that experience opened a whole new world to me. It’s my fondest hope that
Programmer Passport will do the same for you, offering a new language with
new content every two weeks. Here’s what you can expect.

• Every two months, we’ll vote on the next language to cover. I’ll suggest a
few languages that build on the one we’re doing currently and we’ll choose
one of those.

• Twice a month we’ll release a new piece of the book and a new video.
• We’ll mix in a few links for you to explore with projects or exercises for

you to try.

It’s the first week, so please be patient while we work the bugs out and give
you features to make the experience more pleasant. We hope you enjoy the
journey together!

report erratum • discuss

CHAPTER 1

Crystal Clear Philosophy
For as long as we’ve been building things and taking midday meals, engineers
have been searching franticly for a free lunch. You’ve been part of enough
quests to know no such thing exists. Crystal’s central philosophy, from the
beginning, is enticing: fast like C, slick like Ruby. Adding C-like performance
to a Ruby-like language, for free, is an ambitious goal. Almost every great
language has clear goals like this one.

This book will tease out what makes Crystal special. Fair warning, though,
we’re going to talk a lot about Ruby. If you’re already working up a righteous
anger, give us a few minutes to explain why. Historically, Crystal was initially
intended to be a fully compatible replacement to Ruby, but one that is more
type safe and performant. If you don’t have a Ruby background, don’t worry.
Your dutiful guide will bring you along gently.

The first module will focus on Crystal’s promises of performance and ease of
use, making sure to linger on the direct benefits of Crystal’s approach to
deliver both of these goals. Every lunch has a price so we’ll foreshadow those
hidden costs that might sneak in. At this early stage, we’ll spend most of our
time together getting the tools for Crystal set up and working some basic
exercises to limber up our muscles. Our goals will be pretty modest:

• Get the language installed
• Understand the basic tools at our disposal
• Learn to use the playground and notebook to explore Crystal
• Understand the simple primitive types and operators in the language

Along the way, I’ll point out some of the places you can go to find interesting
exercises, and this book will offer a few puzzles and exercises as well.

report erratum • discuss

Meet Crystal
Without further ado, it’s time to introduce Crystal, the language that’s built
to do many of the things C can do but with the friendliness of Ruby. Based
on rapid adoption within the Ruby community, it’s a quickly growing language
and it has an impressive list of strengths, including some nice feature
groupings you don’t usually find together in the same language.

Crystal was initially designed to be a drop in replacement for Ruby, but one
with a type system friendlier to compile-time checking, tooling and compilers.
As the language has grown it has dropped complete compatibility with Ruby
to better support the goals of the type system. Still, Crystal and Ruby syntax
are remarkably similar. Let’s look at what makes Crystal special.

The Essence
With heavy Ruby inspiration for library structure, syntax, and code organiza-
tion, Crystal is plenty smooth. As a language with some type optimizations
and a compiler, its performance in production is extremely fast compared to
Ruby.

Ruby is an interesting, sometimes controversial language that is extremely
concise and productive in the short term, at the cost of less protection from
runtime bugs and slower runtime performance. Crystal provides a bit more
rigor with compilation and a type system. The compiler can catch many
problems before a program is ever run.

Sometimes, with languages such as Java, a type system can levy pretty heavy
taxes of extra keystrokes. Rather than requiring the developer to explicitly
express types, the Crystal compiler can infer most of them based on clues in
the rest of a program. Crystal certainly maintains many of Ruby’s syntactic
benefits, as you can see in this idiomatic example from the first few pages of
Crystal’s online tutorial:1

require "http/server"

server = HTTP::Server.new do |context|
context.response.content_type = "text/plain"
context.response.print "Hello world! The time is #{Time.now}"

end

address = server.bind_tcp 8080
puts "Listening on http://#{address}"
server.listen

1. https://crystal-lang.org/reference/overview/http_server.html

Chapter 1. Crystal Clear Philosophy • 2

report erratum • discuss

I’m a particular fan of Ruby’s syntax, and Crystal’s is nearly identical. If you’ve
done very much with Ruby, the syntax of the previous example will, um,
crystallize for you right away, from the code blocks to string interpolation.
That code is a simple web server that we’ll cover in more detail later in this
module. We’ll get into language features as the book goes on, but for now,
let’s whet your appetite.

Fact 1. Crystal’s type system addresses problems such as nil pointers.

What you might not get from the previous example is that Crystal has a much
different type system than Ruby, one that makes nil pointer exceptions much
more rare. The type system is more static, but not oppressively so from a
programming requirements standpoint. Consider this snippet that declares
two different arrays:

jagged_glass = [] of String?
fluffy_pillows = [] of String

jagged_glass[0] = nil # OK
fluffy_pillows[0] = nil # ERROR!

The first array can have nil values, the second can’t. You’ll see that the program
will force you to think about where nil values can occur and even raise
exceptions when you make a mistake. We’ll dive more into the type system
as we go.

Type systems can’t keep you from making many logical errors, but they can
save you from a whole class of problems including softening the ways nil values
can occur in production.

Fact 2. Crystal’s speed sometimes makes it a reasonable C replacement.

Crystal is indeed a compiled language, so the results you get are in the same
ballpark as what you’d find in C. Since Crystal has a much better story for
higher level programming constructs and automatic garbage collection, it’s
often a better choice for attacking those low-level components you can
sometimes find yourself building as a performance optimization. You’ll build
C interfaces with bindings. They are easy to declare, like this:

lib C
fun cos(value : Float64) : Float64
end

That binding makes the C function cos, which takes a C double and returns a
double, available to Crystal programs. Slick. You don’t have to fully understand
what’s happening here. For now, understand that the Crystal language makes
language interfaces pretty simple.

report erratum • discuss

Meet Crystal • 3

